Source code for opentelemetry.sdk.metrics._internal.aggregation

# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# pylint: disable=too-many-lines

from abc import ABC, abstractmethod
from bisect import bisect_left
from enum import IntEnum
from logging import getLogger
from math import inf
from threading import Lock
from typing import Generic, List, Optional, Sequence, TypeVar

from opentelemetry.metrics import (
    Asynchronous,
    Counter,
    Histogram,
    Instrument,
    ObservableCounter,
    ObservableGauge,
    ObservableUpDownCounter,
    Synchronous,
    UpDownCounter,
    _Gauge,
)
from opentelemetry.sdk.metrics._internal.exponential_histogram.buckets import (
    Buckets,
)
from opentelemetry.sdk.metrics._internal.exponential_histogram.mapping import (
    Mapping,
)
from opentelemetry.sdk.metrics._internal.exponential_histogram.mapping.exponent_mapping import (
    ExponentMapping,
)
from opentelemetry.sdk.metrics._internal.exponential_histogram.mapping.logarithm_mapping import (
    LogarithmMapping,
)
from opentelemetry.sdk.metrics._internal.measurement import Measurement
from opentelemetry.sdk.metrics._internal.point import Buckets as BucketsPoint
from opentelemetry.sdk.metrics._internal.point import (
    ExponentialHistogramDataPoint,
)
from opentelemetry.sdk.metrics._internal.point import Gauge as GaugePoint
from opentelemetry.sdk.metrics._internal.point import (
    Histogram as HistogramPoint,
)
from opentelemetry.sdk.metrics._internal.point import (
    HistogramDataPoint,
    NumberDataPoint,
    Sum,
)
from opentelemetry.util.types import Attributes

_DataPointVarT = TypeVar("_DataPointVarT", NumberDataPoint, HistogramDataPoint)

_logger = getLogger(__name__)


[docs]class AggregationTemporality(IntEnum): """ The temporality to use when aggregating data. Can be one of the following values: """ UNSPECIFIED = 0 DELTA = 1 CUMULATIVE = 2
class _Aggregation(ABC, Generic[_DataPointVarT]): def __init__(self, attributes: Attributes): self._lock = Lock() self._attributes = attributes self._previous_point = None @abstractmethod def aggregate(self, measurement: Measurement) -> None: pass @abstractmethod def collect( self, collection_aggregation_temporality: AggregationTemporality, collection_start_nano: int, ) -> Optional[_DataPointVarT]: pass class _DropAggregation(_Aggregation): def aggregate(self, measurement: Measurement) -> None: pass def collect( self, collection_aggregation_temporality: AggregationTemporality, collection_start_nano: int, ) -> Optional[_DataPointVarT]: pass class _SumAggregation(_Aggregation[Sum]): def __init__( self, attributes: Attributes, instrument_is_monotonic: bool, instrument_aggregation_temporality: AggregationTemporality, start_time_unix_nano: int, ): super().__init__(attributes) self._start_time_unix_nano = start_time_unix_nano self._instrument_aggregation_temporality = ( instrument_aggregation_temporality ) self._instrument_is_monotonic = instrument_is_monotonic self._current_value = None self._previous_collection_start_nano = self._start_time_unix_nano self._previous_cumulative_value = 0 def aggregate(self, measurement: Measurement) -> None: with self._lock: if self._current_value is None: self._current_value = 0 self._current_value = self._current_value + measurement.value def collect( self, collection_aggregation_temporality: AggregationTemporality, collection_start_nano: int, ) -> Optional[NumberDataPoint]: """ Atomically return a point for the current value of the metric and reset the aggregation value. Synchronous instruments have a method which is called directly with increments for a given quantity: For example, an instrument that counts the amount of passengers in every vehicle that crosses a certain point in a highway: synchronous_instrument.add(2) collect(...) # 2 passengers are counted synchronous_instrument.add(3) collect(...) # 3 passengers are counted synchronous_instrument.add(1) collect(...) # 1 passenger is counted In this case the instrument aggregation temporality is DELTA because every value represents an increment to the count, Asynchronous instruments have a callback which returns the total value of a given quantity: For example, an instrument that measures the amount of bytes written to a certain hard drive: callback() -> 1352 collect(...) # 1352 bytes have been written so far callback() -> 2324 collect(...) # 2324 bytes have been written so far callback() -> 4542 collect(...) # 4542 bytes have been written so far In this case the instrument aggregation temporality is CUMULATIVE because every value represents the total of the measurement. There is also the collection aggregation temporality, which is passed to this method. The collection aggregation temporality defines the nature of the returned value by this aggregation. When the collection aggregation temporality matches the instrument aggregation temporality, then this method returns the current value directly: synchronous_instrument.add(2) collect(DELTA) -> 2 synchronous_instrument.add(3) collect(DELTA) -> 3 synchronous_instrument.add(1) collect(DELTA) -> 1 callback() -> 1352 collect(CUMULATIVE) -> 1352 callback() -> 2324 collect(CUMULATIVE) -> 2324 callback() -> 4542 collect(CUMULATIVE) -> 4542 When the collection aggregation temporality does not match the instrument aggregation temporality, then a conversion is made. For this purpose, this aggregation keeps a private attribute, self._previous_cumulative. When the instrument is synchronous: self._previous_cumulative_value is the sum of every previously collected (delta) value. In this case, the returned (cumulative) value will be: self._previous_cumulative_value + current_value synchronous_instrument.add(2) collect(CUMULATIVE) -> 2 synchronous_instrument.add(3) collect(CUMULATIVE) -> 5 synchronous_instrument.add(1) collect(CUMULATIVE) -> 6 Also, as a diagram: time -> self._previous_cumulative_value |-------------| current_value (delta) |----| returned value (cumulative) |------------------| When the instrument is asynchronous: self._previous_cumulative_value is the value of the previously collected (cumulative) value. In this case, the returned (delta) value will be: current_value - self._previous_cumulative_value callback() -> 1352 collect(DELTA) -> 1352 callback() -> 2324 collect(DELTA) -> 972 callback() -> 4542 collect(DELTA) -> 2218 Also, as a diagram: time -> self._previous_cumulative_value |-------------| current_value (cumulative) |------------------| returned value (delta) |----| """ with self._lock: current_value = self._current_value self._current_value = None if ( self._instrument_aggregation_temporality is AggregationTemporality.DELTA ): # This happens when the corresponding instrument for this # aggregation is synchronous. if ( collection_aggregation_temporality is AggregationTemporality.DELTA ): if current_value is None: return None previous_collection_start_nano = ( self._previous_collection_start_nano ) self._previous_collection_start_nano = ( collection_start_nano ) return NumberDataPoint( attributes=self._attributes, start_time_unix_nano=previous_collection_start_nano, time_unix_nano=collection_start_nano, value=current_value, ) if current_value is None: current_value = 0 self._previous_cumulative_value = ( current_value + self._previous_cumulative_value ) return NumberDataPoint( attributes=self._attributes, start_time_unix_nano=self._start_time_unix_nano, time_unix_nano=collection_start_nano, value=self._previous_cumulative_value, ) # This happens when the corresponding instrument for this # aggregation is asynchronous. if current_value is None: # This happens when the corresponding instrument callback # does not produce measurements. return None if ( collection_aggregation_temporality is AggregationTemporality.DELTA ): result_value = current_value - self._previous_cumulative_value self._previous_cumulative_value = current_value previous_collection_start_nano = ( self._previous_collection_start_nano ) self._previous_collection_start_nano = collection_start_nano return NumberDataPoint( attributes=self._attributes, start_time_unix_nano=previous_collection_start_nano, time_unix_nano=collection_start_nano, value=result_value, ) return NumberDataPoint( attributes=self._attributes, start_time_unix_nano=self._start_time_unix_nano, time_unix_nano=collection_start_nano, value=current_value, ) class _LastValueAggregation(_Aggregation[GaugePoint]): def __init__(self, attributes: Attributes): super().__init__(attributes) self._value = None def aggregate(self, measurement: Measurement): with self._lock: self._value = measurement.value def collect( self, collection_aggregation_temporality: AggregationTemporality, collection_start_nano: int, ) -> Optional[_DataPointVarT]: """ Atomically return a point for the current value of the metric. """ with self._lock: if self._value is None: return None value = self._value self._value = None return NumberDataPoint( attributes=self._attributes, start_time_unix_nano=0, time_unix_nano=collection_start_nano, value=value, ) class _ExplicitBucketHistogramAggregation(_Aggregation[HistogramPoint]): def __init__( self, attributes: Attributes, instrument_aggregation_temporality: AggregationTemporality, start_time_unix_nano: int, boundaries: Sequence[float] = ( 0.0, 5.0, 10.0, 25.0, 50.0, 75.0, 100.0, 250.0, 500.0, 750.0, 1000.0, 2500.0, 5000.0, 7500.0, 10000.0, ), record_min_max: bool = True, ): super().__init__(attributes) self._boundaries = tuple(boundaries) self._record_min_max = record_min_max self._min = inf self._max = -inf self._sum = 0 self._start_time_unix_nano = start_time_unix_nano self._instrument_aggregation_temporality = ( instrument_aggregation_temporality ) self._current_value = None self._previous_collection_start_nano = self._start_time_unix_nano self._previous_cumulative_value = self._get_empty_bucket_counts() self._previous_min = inf self._previous_max = -inf self._previous_sum = 0 def _get_empty_bucket_counts(self) -> List[int]: return [0] * (len(self._boundaries) + 1) def aggregate(self, measurement: Measurement) -> None: with self._lock: if self._current_value is None: self._current_value = self._get_empty_bucket_counts() value = measurement.value self._sum += value if self._record_min_max: self._min = min(self._min, value) self._max = max(self._max, value) self._current_value[bisect_left(self._boundaries, value)] += 1 def collect( self, collection_aggregation_temporality: AggregationTemporality, collection_start_nano: int, ) -> Optional[_DataPointVarT]: """ Atomically return a point for the current value of the metric. """ with self._lock: current_value = self._current_value sum_ = self._sum min_ = self._min max_ = self._max self._current_value = None self._sum = 0 self._min = inf self._max = -inf if ( self._instrument_aggregation_temporality is AggregationTemporality.DELTA ): # This happens when the corresponding instrument for this # aggregation is synchronous. if ( collection_aggregation_temporality is AggregationTemporality.DELTA ): if current_value is None: return None previous_collection_start_nano = ( self._previous_collection_start_nano ) self._previous_collection_start_nano = ( collection_start_nano ) return HistogramDataPoint( attributes=self._attributes, start_time_unix_nano=previous_collection_start_nano, time_unix_nano=collection_start_nano, count=sum(current_value), sum=sum_, bucket_counts=tuple(current_value), explicit_bounds=self._boundaries, min=min_, max=max_, ) if current_value is None: current_value = self._get_empty_bucket_counts() self._previous_cumulative_value = [ current_value_element + previous_cumulative_value_element for ( current_value_element, previous_cumulative_value_element, ) in zip(current_value, self._previous_cumulative_value) ] self._previous_min = min(min_, self._previous_min) self._previous_max = max(max_, self._previous_max) self._previous_sum = sum_ + self._previous_sum return HistogramDataPoint( attributes=self._attributes, start_time_unix_nano=self._start_time_unix_nano, time_unix_nano=collection_start_nano, count=sum(self._previous_cumulative_value), sum=self._previous_sum, bucket_counts=tuple(self._previous_cumulative_value), explicit_bounds=self._boundaries, min=self._previous_min, max=self._previous_max, ) return None def _new_exponential_mapping(scale: int) -> Mapping: if scale <= 0: return ExponentMapping(scale) return LogarithmMapping(scale) # pylint: disable=protected-access class _ExponentialBucketHistogramAggregation(_Aggregation[HistogramPoint]): # _min_max_size and _max_max_size are the smallest and largest values # the max_size parameter may have, respectively. # _min_max_size is is the smallest reasonable value which is small enough # to contain the entire normal floating point range at the minimum scale. _min_max_size = 2 # _max_max_size is an arbitrary limit meant to limit accidental creation of # giant exponential bucket histograms. _max_max_size = 16384 def __init__( self, attributes: Attributes, start_time_unix_nano: int, # This is the default maximum number of buckets per positive or # negative number range. The value 160 is specified by OpenTelemetry. # See the derivation here: # https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/metrics/sdk.md#exponential-bucket-histogram-aggregation) max_size: int = 160, max_scale: int = 20, ): super().__init__(attributes) # max_size is the maximum capacity of the positive and negative # buckets. if max_size < self._min_max_size: raise ValueError( f"Buckets max size {max_size} is smaller than " "minimum max size {self._min_max_size}" ) if max_size > self._max_max_size: raise ValueError( f"Buckets max size {max_size} is larger than " "maximum max size {self._max_max_size}" ) self._max_size = max_size self._max_scale = max_scale # _sum is the sum of all the values aggregated by this aggregator. self._sum = 0 # _count is the count of all calls to aggregate. self._count = 0 # _zero_count is the count of all the calls to aggregate when the value # to be aggregated is exactly 0. self._zero_count = 0 # _min is the smallest value aggregated by this aggregator. self._min = inf # _max is the smallest value aggregated by this aggregator. self._max = -inf # _positive holds the positive values. self._positive = Buckets() # _negative holds the negative values by their absolute value. self._negative = Buckets() # _mapping corresponds to the current scale, is shared by both the # positive and negative buckets. if self._max_scale > 20: _logger.warning( "max_scale is set to %s which is " "larger than the recommended value of 20", self._max_scale, ) self._mapping = _new_exponential_mapping(self._max_scale) self._instrument_aggregation_temporality = AggregationTemporality.DELTA self._start_time_unix_nano = start_time_unix_nano self._previous_scale = None self._previous_start_time_unix_nano = None self._previous_zero_count = None self._previous_count = None self._previous_sum = None self._previous_max = None self._previous_min = None self._previous_positive = None self._previous_negative = None def aggregate(self, measurement: Measurement) -> None: # pylint: disable=too-many-branches,too-many-statements, too-many-locals with self._lock: value = measurement.value # 0. Set the following attributes: # _min # _max # _count # _zero_count # _sum if value < self._min: self._min = value if value > self._max: self._max = value self._count += 1 if value == 0: self._zero_count += 1 # No need to do anything else if value is zero, just increment the # zero count. return self._sum += value # 1. Use the positive buckets for positive values and the negative # buckets for negative values. if value > 0: buckets = self._positive else: # Both exponential and logarithm mappings use only positive values # so the absolute value is used here. value = -value buckets = self._negative # 2. Compute the index for the value at the current scale. index = self._mapping.map_to_index(value) # IncrementIndexBy starts here # 3. Determine if a change of scale is needed. is_rescaling_needed = False low, high = 0, 0 if len(buckets) == 0: buckets.index_start = index buckets.index_end = index buckets.index_base = index elif ( index < buckets.index_start and (buckets.index_end - index) >= self._max_size ): is_rescaling_needed = True low = index high = buckets.index_end elif ( index > buckets.index_end and (index - buckets.index_start) >= self._max_size ): is_rescaling_needed = True low = buckets.index_start high = index # 4. Rescale the mapping if needed. if is_rescaling_needed: scale_change = self._get_scale_change(low, high) self._downscale( scale_change, self._positive, self._negative, ) new_scale = self._mapping.scale - scale_change self._mapping = _new_exponential_mapping(new_scale) index = self._mapping.map_to_index(value) # 5. If the index is outside # [buckets.index_start, buckets.index_end] readjust the buckets # boundaries or add more buckets. if index < buckets.index_start: span = buckets.index_end - index if span >= len(buckets.counts): buckets.grow(span + 1, self._max_size) buckets.index_start = index elif index > buckets.index_end: span = index - buckets.index_start if span >= len(buckets.counts): buckets.grow(span + 1, self._max_size) buckets.index_end = index # 6. Compute the index of the bucket to be incremented. bucket_index = index - buckets.index_base if bucket_index < 0: bucket_index += len(buckets.counts) # 7. Increment the bucket. buckets.increment_bucket(bucket_index) def collect( self, collection_aggregation_temporality: AggregationTemporality, collection_start_nano: int, ) -> Optional[_DataPointVarT]: """ Atomically return a point for the current value of the metric. """ # pylint: disable=too-many-statements, too-many-locals with self._lock: if self._count == 0: return None current_negative = self._negative current_positive = self._positive current_zero_count = self._zero_count current_count = self._count current_start_time_unix_nano = self._start_time_unix_nano current_sum = self._sum current_max = self._max if current_max == -inf: current_max = None current_min = self._min if current_min == inf: current_min = None if self._count == self._zero_count: current_scale = 0 else: current_scale = self._mapping.scale self._negative = Buckets() self._positive = Buckets() self._start_time_unix_nano = collection_start_nano self._sum = 0 self._count = 0 self._zero_count = 0 self._min = inf self._max = -inf if self._previous_scale is None or ( self._instrument_aggregation_temporality is collection_aggregation_temporality ): self._previous_scale = current_scale self._previous_start_time_unix_nano = ( current_start_time_unix_nano ) self._previous_max = current_max self._previous_min = current_min self._previous_sum = current_sum self._previous_count = current_count self._previous_zero_count = current_zero_count self._previous_positive = current_positive self._previous_negative = current_negative current_point = ExponentialHistogramDataPoint( attributes=self._attributes, start_time_unix_nano=current_start_time_unix_nano, time_unix_nano=collection_start_nano, count=current_count, sum=current_sum, scale=current_scale, zero_count=current_zero_count, positive=BucketsPoint( offset=current_positive.offset, bucket_counts=current_positive.get_offset_counts(), ), negative=BucketsPoint( offset=current_negative.offset, bucket_counts=current_negative.get_offset_counts(), ), # FIXME: Find the right value for flags flags=0, min=current_min, max=current_max, ) return current_point min_scale = min(self._previous_scale, current_scale) low_positive, high_positive = self._get_low_high_previous_current( self._previous_positive, current_positive, current_scale, min_scale, ) low_negative, high_negative = self._get_low_high_previous_current( self._previous_negative, current_negative, current_scale, min_scale, ) min_scale = min( min_scale - self._get_scale_change(low_positive, high_positive), min_scale - self._get_scale_change(low_negative, high_negative), ) # FIXME Go implementation checks if the histogram (not the mapping # but the histogram) has a count larger than zero, if not, scale # (the histogram scale) would be zero. See exponential.go 191 self._downscale( self._previous_scale - min_scale, self._previous_positive, self._previous_negative, ) self._previous_scale = min_scale if ( collection_aggregation_temporality is AggregationTemporality.CUMULATIVE ): start_time_unix_nano = self._previous_start_time_unix_nano sum_ = current_sum + self._previous_sum zero_count = current_zero_count + self._previous_zero_count count = current_count + self._previous_count # Only update min/max on delta -> cumulative max_ = max(current_max, self._previous_max) min_ = min(current_min, self._previous_min) self._merge( self._previous_positive, current_positive, current_scale, min_scale, collection_aggregation_temporality, ) self._merge( self._previous_negative, current_negative, current_scale, min_scale, collection_aggregation_temporality, ) current_scale = min_scale current_positive = self._previous_positive current_negative = self._previous_negative else: start_time_unix_nano = self._previous_start_time_unix_nano sum_ = current_sum - self._previous_sum zero_count = current_zero_count count = current_count max_ = current_max min_ = current_min self._merge( self._previous_positive, current_positive, current_scale, min_scale, collection_aggregation_temporality, ) self._merge( self._previous_negative, current_negative, current_scale, min_scale, collection_aggregation_temporality, ) current_point = ExponentialHistogramDataPoint( attributes=self._attributes, start_time_unix_nano=start_time_unix_nano, time_unix_nano=collection_start_nano, count=count, sum=sum_, scale=current_scale, zero_count=zero_count, positive=BucketsPoint( offset=current_positive.offset, bucket_counts=current_positive.get_offset_counts(), ), negative=BucketsPoint( offset=current_negative.offset, bucket_counts=current_negative.get_offset_counts(), ), # FIXME: Find the right value for flags flags=0, min=min_, max=max_, ) self._previous_scale = current_scale self._previous_positive = current_positive self._previous_negative = current_negative self._previous_start_time_unix_nano = current_start_time_unix_nano self._previous_sum = sum_ self._previous_count = count self._previous_max = max_ self._previous_min = min_ self._previous_zero_count = zero_count return current_point def _get_low_high_previous_current( self, previous_point_buckets, current_point_buckets, current_scale, min_scale, ): (previous_point_low, previous_point_high) = self._get_low_high( previous_point_buckets, self._previous_scale, min_scale ) (current_point_low, current_point_high) = self._get_low_high( current_point_buckets, current_scale, min_scale ) if current_point_low > current_point_high: low = previous_point_low high = previous_point_high elif previous_point_low > previous_point_high: low = current_point_low high = current_point_high else: low = min(previous_point_low, current_point_low) high = max(previous_point_high, current_point_high) return low, high @staticmethod def _get_low_high(buckets, scale, min_scale): if buckets.counts == [0]: return 0, -1 shift = scale - min_scale return buckets.index_start >> shift, buckets.index_end >> shift def _get_scale_change(self, low, high): change = 0 while high - low >= self._max_size: high = high >> 1 low = low >> 1 change += 1 return change @staticmethod def _downscale(change: int, positive, negative): if change == 0: return if change < 0: raise Exception("Invalid change of scale") positive.downscale(change) negative.downscale(change) def _merge( self, previous_buckets: Buckets, current_buckets: Buckets, current_scale, min_scale, aggregation_temporality, ): current_change = current_scale - min_scale for current_bucket_index, current_bucket in enumerate( current_buckets.counts ): if current_bucket == 0: continue # Not considering the case where len(previous_buckets) == 0. This # would not happen because self._previous_point is only assigned to # an ExponentialHistogramDataPoint object if self._count != 0. current_index = current_buckets.index_base + current_bucket_index if current_index > current_buckets.index_end: current_index -= len(current_buckets.counts) index = current_index >> current_change if index < previous_buckets.index_start: span = previous_buckets.index_end - index if span >= self._max_size: raise Exception("Incorrect merge scale") if span >= len(previous_buckets.counts): previous_buckets.grow(span + 1, self._max_size) previous_buckets.index_start = index if index > previous_buckets.index_end: span = index - previous_buckets.index_start if span >= self._max_size: raise Exception("Incorrect merge scale") if span >= len(previous_buckets.counts): previous_buckets.grow(span + 1, self._max_size) previous_buckets.index_end = index bucket_index = index - previous_buckets.index_base if bucket_index < 0: bucket_index += len(previous_buckets.counts) if aggregation_temporality is AggregationTemporality.DELTA: current_bucket = -current_bucket previous_buckets.increment_bucket( bucket_index, increment=current_bucket )
[docs]class Aggregation(ABC): """ Base class for all aggregation types. """ @abstractmethod def _create_aggregation( self, instrument: Instrument, attributes: Attributes, start_time_unix_nano: int, ) -> _Aggregation: """Creates an aggregation"""
[docs]class DefaultAggregation(Aggregation): """ The default aggregation to be used in a `View`. This aggregation will create an actual aggregation depending on the instrument type, as specified next: ==================================================== ==================================== Instrument Aggregation ==================================================== ==================================== `opentelemetry.sdk.metrics.Counter` `SumAggregation` `opentelemetry.sdk.metrics.UpDownCounter` `SumAggregation` `opentelemetry.sdk.metrics.ObservableCounter` `SumAggregation` `opentelemetry.sdk.metrics.ObservableUpDownCounter` `SumAggregation` `opentelemetry.sdk.metrics.Histogram` `ExplicitBucketHistogramAggregation` `opentelemetry.sdk.metrics.ObservableGauge` `LastValueAggregation` ==================================================== ==================================== """ def _create_aggregation( self, instrument: Instrument, attributes: Attributes, start_time_unix_nano: int, ) -> _Aggregation: # pylint: disable=too-many-return-statements if isinstance(instrument, Counter): return _SumAggregation( attributes, instrument_is_monotonic=True, instrument_aggregation_temporality=( AggregationTemporality.DELTA ), start_time_unix_nano=start_time_unix_nano, ) if isinstance(instrument, UpDownCounter): return _SumAggregation( attributes, instrument_is_monotonic=False, instrument_aggregation_temporality=( AggregationTemporality.DELTA ), start_time_unix_nano=start_time_unix_nano, ) if isinstance(instrument, ObservableCounter): return _SumAggregation( attributes, instrument_is_monotonic=True, instrument_aggregation_temporality=( AggregationTemporality.CUMULATIVE ), start_time_unix_nano=start_time_unix_nano, ) if isinstance(instrument, ObservableUpDownCounter): return _SumAggregation( attributes, instrument_is_monotonic=False, instrument_aggregation_temporality=( AggregationTemporality.CUMULATIVE ), start_time_unix_nano=start_time_unix_nano, ) if isinstance(instrument, Histogram): return _ExplicitBucketHistogramAggregation( attributes, instrument_aggregation_temporality=( AggregationTemporality.DELTA ), start_time_unix_nano=start_time_unix_nano, ) if isinstance(instrument, ObservableGauge): return _LastValueAggregation(attributes) if isinstance(instrument, _Gauge): return _LastValueAggregation(attributes) raise Exception(f"Invalid instrument type {type(instrument)} found")
[docs]class ExponentialBucketHistogramAggregation(Aggregation): def __init__( self, max_size: int = 160, max_scale: int = 20, ): self._max_size = max_size self._max_scale = max_scale def _create_aggregation( self, instrument: Instrument, attributes: Attributes, start_time_unix_nano: int, ) -> _Aggregation: return _ExponentialBucketHistogramAggregation( attributes, start_time_unix_nano, max_size=self._max_size, max_scale=self._max_scale, )
[docs]class ExplicitBucketHistogramAggregation(Aggregation): """This aggregation informs the SDK to collect: - Count of Measurement values falling within explicit bucket boundaries. - Arithmetic sum of Measurement values in population. This SHOULD NOT be collected when used with instruments that record negative measurements, e.g. UpDownCounter or ObservableGauge. - Min (optional) Measurement value in population. - Max (optional) Measurement value in population. Args: boundaries: Array of increasing values representing explicit bucket boundary values. record_min_max: Whether to record min and max. """ def __init__( self, boundaries: Sequence[float] = ( 0.0, 5.0, 10.0, 25.0, 50.0, 75.0, 100.0, 250.0, 500.0, 750.0, 1000.0, 2500.0, 5000.0, 7500.0, 10000.0, ), record_min_max: bool = True, ) -> None: self._boundaries = boundaries self._record_min_max = record_min_max def _create_aggregation( self, instrument: Instrument, attributes: Attributes, start_time_unix_nano: int, ) -> _Aggregation: instrument_aggregation_temporality = AggregationTemporality.UNSPECIFIED if isinstance(instrument, Synchronous): instrument_aggregation_temporality = AggregationTemporality.DELTA elif isinstance(instrument, Asynchronous): instrument_aggregation_temporality = ( AggregationTemporality.CUMULATIVE ) return _ExplicitBucketHistogramAggregation( attributes, instrument_aggregation_temporality, start_time_unix_nano, self._boundaries, self._record_min_max, )
[docs]class SumAggregation(Aggregation): """This aggregation informs the SDK to collect: - The arithmetic sum of Measurement values. """ def _create_aggregation( self, instrument: Instrument, attributes: Attributes, start_time_unix_nano: int, ) -> _Aggregation: instrument_aggregation_temporality = AggregationTemporality.UNSPECIFIED if isinstance(instrument, Synchronous): instrument_aggregation_temporality = AggregationTemporality.DELTA elif isinstance(instrument, Asynchronous): instrument_aggregation_temporality = ( AggregationTemporality.CUMULATIVE ) return _SumAggregation( attributes, isinstance(instrument, (Counter, ObservableCounter)), instrument_aggregation_temporality, start_time_unix_nano, )
[docs]class LastValueAggregation(Aggregation): """ This aggregation informs the SDK to collect: - The last Measurement. - The timestamp of the last Measurement. """ def _create_aggregation( self, instrument: Instrument, attributes: Attributes, start_time_unix_nano: int, ) -> _Aggregation: return _LastValueAggregation(attributes)
[docs]class DropAggregation(Aggregation): """Using this aggregation will make all measurements be ignored.""" def _create_aggregation( self, instrument: Instrument, attributes: Attributes, start_time_unix_nano: int, ) -> _Aggregation: return _DropAggregation(attributes)